Poiseuille’s law
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Relation of pressure drop to velocity and flow (Hagen-Poiseuille law)
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Relation of pressure drop to velocity and flow (Hagen-Poiseuille law)
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Relation of pressure drop to velocity and flow (Hagen-Poiseuille law)
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Wall shear stress for Poiseuille flow
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Poiseuille’s law: summary and limitations
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Conditions:
» Laminar, steady and developed flow
* Newtonian fluid

» Straight, uniform, constant diameter tube
* Rigid wall



Inlet length

Parabolic
N

Inlet length, L,

Skewed

INLET LENGTH. Flow entering a side branch
results in skewed profile. It takes a certain inlet

length before the velocity develops into a
parabolic profile again.
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3D and non-Newtonian effects

95 Aortic arch
9 Celiac trunk
A
Remarks:
1) Non-Newtonian and 3D
effects are negligible in
B the big vessels
| @ 2) Non-Newtonian and 3D
Ok effects are important in
5 s, CCA small peripheral parties
S Dy and in particular in the
T tortuous vessels of the
cerebral circulation
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Shear stress distribution

3D
Poiseuille (1D)

Wall Shear

(Default Domain Default)
1.000e+001

o

circumforental angle (%)

- 7.500e+000

5.000e+000

2.500e+000

0.000e+000
[Pa]

0 0.150 0.300 . . . .
— — | i Conclusion: Wall shear stress in tortuous vessels is non-uniform and

0073 0.225 its value its underestimated when using the Poiseuille formula.



Resistance
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Addition of resistances
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Distribution of resistances
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Compare resistances of the aorta, arterioles and capillaries

Aorta Arterioles Capilaries
number of arterial 1 3x108 1.5x109
segments in parallel (n)

Radius (r) 15 mm 7.5 7.5
Length (I) 50 cm 1 mm 1 mm
Resistance of single 1.00x10° 3.22x1015 3.22x1075
segment

S ul

R = — 1

r

Total resistance 1.00x10° 2.14x106

P

The highest resistance is at the level of the arterioles




Bernoulli

P]+]/2pV]2+ ng1=P2+]/2pV22+ ng2

1 , Conditions:
— — * No friction (no viscous losses)
p+2pv +pgh ct e Steady flow

Pressure * Along a streamline

—

Dynamic Pressure

Hydrostatic Pressure



Example using the Bernoulli equation: the Gorlin equation for aortic stenosis

Let us consider flow through a stenosed valve according to Figure. Applying Bernoulli's law
and assuming height differences can be neglected

Py + p V2 = Ps + apl?
AP:PV-PSZI/ZP(VS2' VVZ)

The flow Q 1s the same at both locations, thus

AV = AV =0

| . where 4, and A are the cross-sectional areas of ventricle and valve, respectively. Substituting this
Pv: ventricular pressure

Ps: pressure at the aortic stenosis into the Bernoulli's equation we obtain:
Vv: velocity in ventricular lumen
Vs: velocity at the valvular stenosis AP = Py - Py =% pQO2(1/4°— 1/4,7)

Since 45 << A, the equation can be simplified to:

AP = Yp(? [A2 = f2pvs?

This relation has been used to estimate effective area , A,, of a valvular stenosis by measuring flow and pressure gradient (e.g., using a pressure wire).
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Example using the Bernoulli equation: pressure rise at the apex of the iliac bifurcation

At peak systole (P = 120 mmHg), the blood flowing in the lower abdominal
( F = 420 mm #3 aorta with a peak velocity v = 0.5 m/s hits the wall of the apex of the 1liac

V) = 0.5 =% bifurcation.

If it would come to a rest there, velocity 1s negligible (v = 0). On the basis of
the Bernoull1 equation
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Turbulence

Velocity recording
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Turbulence
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« “Random’, erratic movement of fluid
particles

* Energy dissipation

* |ncreased friction:
T=W"* “shear rate”

Time



Turbulence: velocity profile

Y

Laminar
flow
Turbulent
flow

Velocity profile Sliding shell analog



Reynolds number and transition to turbulence

Critical Re = 2100 }Sition “On®
=
= | laminar turbulence
1,
Pressure gradient
Reynolds number Ra— PPV _ Inertial effects

u Viscous effects



