
Poiseuille’s law



Relation of pressure drop to velocity and flow (Hagen-Poiseuille law)
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Wall shear stress for Poiseuille flow



Poiseuille’s law: summary and limitations

Velocity profile is       
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Conditions: 
• Laminar, steady and developed flow 
• Newtonian fluid 
• Straight, uniform, constant diameter tube  
• Rigid wall



Inlet length

INLET LENGTH. Flow entering a side branch
results in skewed profile. It takes a certain inlet
length before the velocity develops into a
parabolic profile again.
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3D and non-Newtonian effects

Remarks: 

1) Non-Newtonian and 3D 
effects are negligible in 
the big vessels 

2) Non-Newtonian and 3D 
effects are important in 
small peripheral parties 
and in particular in the 
tortuous vessels of the 
cerebral circulation
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Shear stress distribution

Conclusion: Wall shear stress in tortuous vessels is non-uniform and 
its value its underestimated when using the Poiseuille formula.

Poiseuille (1D)
3D



Resistance

Δ P

R = ΔP
Q

= 8µl
πr4



Addition of resistances



Distribution of resistances
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Compare resistances of the aorta, arterioles and capillaries

Aorta Arterioles Capilaries
number of arterial 
segments in parallel (n)

1 3x108 1.5x109

Radius (r) 15 mm 7.5 µ 7.5 µ

Length (l) 50 cm 1 mm 1 mm

Resistance of single 
segment 

1.00x105 3.22x1015 3.22x1015

Total resistance 1.00x105 1.07x107 2.14x106

R = 8µl
πr4

Rtot =
R
n

The highest resistance is at the level of the arterioles



Pressure

p+ 12ρV
2 + ρgh= ct

Bernoulli

P1 + 1/2 ρ v12 +  ρ g z1 = P2 + 1/2 ρ v22 +  ρ g z2 

Conditions: 
• No friction (no viscous losses) 
• Steady flow 
• Along a streamline

Dynamic Pressure

Hydrostatic Pressure 



Example using the Bernoulli equation: the Gorlin equation for aortic stenosis

vs
Ps

vv
Pv

3.1

Pv: ventricular pressure  
Ps: pressure at the aortic stenosis 
Vv: velocity in ventricular lumen 
Vs: velocity at the valvular stenosis 

Let us consider flow through a stenosed valve according to Figure. Applying Bernoulli's law 
and assuming height differences can be neglected 
 

Pv + ½ρVv2 = Ps + ½ρVs2 

The flow Q is the same at both locations, thus 

AvVv = AsVs = Q

ΔP = Pv - Ps = ½ρ(Vs2 - Vv2) 

where Av and As are the cross-sectional areas of ventricle and valve, respectively. Substituting this 
into the Bernoulli's equation we obtain: 

ΔP = Pv - Ps = ½ ρQ2(1/As2– 1/Av2) 
Since As << Av the equation can be simplified to: 

ΔP = ½ρQ2 /As2 = ½ρvs2 

This relation has been used to estimate effective area , As, of a valvular stenosis by measuring flow and pressure gradient (e.g., using a pressure wire). 

As = Q
ρ
2ΔP



Example using the Bernoulli equation: pressure rise at the apex of the iliac bifurcation

At peak systole (P = 120 mmHg), the blood flowing in the lower abdominal 
aorta with a peak velocity v ≈ 0.5 m/s hits the wall of the apex of the iliac 
bifurcation.  

If it would come to a rest there, velocity is negligible (v = 0). On the basis of 
the Bernoulli equation 



   Laminar

Turbulent

Turbulence

• “Random”, erratic movement of fluid 
particles 

• Energy dissipation 
• Increased friction: 
τ = µ • “shear rate”



Turbulence: velocity profile



Viscous effects 

Reynolds number and transition to turbulence

= 
Inertial effects Reynolds number 
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Critical Re = 2100

laminar turbulence
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